The generator matrix
1 0 0 0 0 1 1 1 0 1 1 X 1 0 1 0 1 0 1 X 1 1 1 X 1 1 X X X 1 0 X 1 1 1 1 X 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 1 1 1 1 1 X+1 X X 0 X+1 1 X+1 X+1 X+1 0 X 0 1 X 1 1 1 X 1 0 X+1 0 1 X 0 X X+1 X+1 X
0 0 1 0 0 0 1 1 1 1 X+1 0 0 X+1 X 0 X 1 X 1 0 0 X+1 1 X+1 0 0 1 1 X X 0 X+1 0 X 1 0 X X X 1 0 0
0 0 0 1 0 1 1 0 1 X X+1 1 0 1 1 X 1 1 X+1 X+1 0 0 1 X X+1 0 1 X X 1 0 1 X+1 1 1 0 X X+1 0 X X X+1 0
0 0 0 0 1 1 0 1 X+1 X X+1 X+1 1 X 0 1 0 0 1 X+1 0 X 0 1 X+1 X+1 1 X X X+1 1 1 X 1 X X 1 0 1 1 X+1 X X+1
0 0 0 0 0 X 0 0 X 0 X X X X 0 X X X 0 0 0 X 0 0 X X 0 X 0 X X 0 X 0 X 0 X 0 0 0 0 0 X
0 0 0 0 0 0 X 0 0 0 0 0 X 0 0 X X X X 0 X 0 X X X 0 X 0 0 X X X X X 0 X 0 0 0 0 X 0 X
0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X 0 X X X 0 X 0 0 X X X X
generates a code of length 43 over Z2[X]/(X^2) who´s minimum homogenous weight is 33.
Homogenous weight enumerator: w(x)=1x^0+50x^33+138x^34+238x^35+270x^36+368x^37+489x^38+478x^39+514x^40+600x^41+648x^42+620x^43+594x^44+612x^45+603x^46+524x^47+445x^48+342x^49+259x^50+166x^51+86x^52+76x^53+35x^54+22x^55+8x^56+2x^58+2x^60+1x^62+1x^66
The gray image is a linear code over GF(2) with n=86, k=13 and d=33.
This code was found by Heurico 1.16 in 5.49 seconds.